

100Gbps QSFP28 Passive Copper Cable QSFP28-DAC

Features

- 4-channel full-duplex passive copper cable
- Data rate up to 100Gbps (4x 25Gbps)
- SFF-8665 compliant QSFP28 connectors
- SFF-8636 compliant I2C management interface
- IEEE 802.3bj 100GBASE-CR4 compliant
- Copper link length up to 5m (passive limiting)
- Hot Pluggable
- Low power consumption
- Excellent signal integrity, low insertion loss and low crosstalk
- Operating case temperature range: 0°C to +70°C
- Single 3.3V supply voltage
- RoHS compliant

Applications

- 100G Ethernet 100GBASE-CR4
- InfiniBand 4x EDR
- SAS, servers, hubs, switches and routers
- Data Center

Description

The 100G QSFP28 passive cable assembly products, based on 4 x25G or 4 x28G structure, the product can well satisfy the next generation 100G switches, servers, routers and other products of application requirements.QSFP28 cable adopts optimized design to reduce crosstalk and insertion loss, excellent signal integrity, fully conforms to the next generation 100G Ethernet and Infiniband EDR standards.

Recommended Operating Conditions

Parameter	Symbol	Min	Typical	Max	Unit
Storage Ambient Temperature		-40		+85	°C
Operating Case Temperature	Тс	0		+70	°C
Power Supply Voltage	VCC3	3.14	3.3	3.47	V
Data Rate Per Lane		1		25.78	Gb/s

High Speed Characteristics

Parameter	Symbo	Min	Typical	Max	Uni	Note
Differential Impedance	RIN,P-	90		110	Ω	
Insertion loss	SDD21			22.48	dB	At 12.8906 GHz
Differential Datum Lago	SDD11			See 1	dB	At 0.05 to 4.1 GHz
Differential Return Loss	SDD22			See 2	dB	At 4.1 to 19 GHz
Common-mode to common-mode output	SCC11				-10	
return loss	SCC22	2			dB	At 0.2 to 19 GHz
Differential to common-mode return loss	SCD11			See 3	dB	At 0.01 to 12.89
	SCD22			See 4		At 12.89 to 19 GHz
				10		At 0.01 to 12.89
Differential to common Mode Conversion	SCD21			See 5	dB	At 12.89 to 15.7
Loss				6.3		At 15.7 to 19 GHz
Channel Operating Margin	СОМ	3			dB	

Notes:

1. Reflection Coefficient given by equation SDD11(dB) < $16.5 - 2 \times SQRT(f)$, with f in GHz

2. Reflection Coefficient given by equation SDD11(dB) < $10.66 - 14 \times \log 10(f/5.5)$, with f in GHz

3. Reflection Coefficient given by equation SCD11(dB) < 22 - (20/25.78)*f, with f in GHz

4. Reflection Coefficient given by equation SCD11(dB) < 15 - (6/25.78)*f, with f in GHz

5. Reflection Coefficient given by equation SCD21(dB) < 27 - (29/22)*f, with f in GHz

Channel insertion loss budget

Pin Descriptions

Pin	Logic	Symbol Name/Description		Notes	
1		GND	Ground	1	
2	CML-I	Tx2n	Transmitter Inverted Data Input		
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input		
4		GND	Ground	1	
5	CML-I	Tx4n	Transmitter Inverted Data Input		
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input		
7		GND	Ground	1	
8	LVTTL-I	ModSelL	Module Select		
9	LVTTL-I	ResetL	Module Reset		
10		Vcc Rx	+3.3V Power Supply Receiver	2	
11	LVCMOSI/O	SCL	2-wire serial interface clock		
12	LVCMOSI/O	SDA	2-wire serial interface data		
13		GND	Ground	1	
14	CML-O	Rx3p	Receiver Non-Inverted Data Output		
15	CML-O	Rx3n	Receiver Inverted Data Output		
16		GND	Ground	1	

17	CML-O	Rx1p	Receiver Non-Inverted Data Output	
18	CML-O	Rx1n	Receiver Inverted Data Output	
19		GND	Ground	1
20		GND	Ground	1
21	CML-O	Rx2n	Receiver Inverted Data Output	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	
23		GND	Ground	1
24	CML-O	Rx4n	Receiver Inverted Data Output	
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	
26		GND	Ground	1
27	LVTTL-O	ModPrsL	Module Present	
28	LVTTL-O	IntL	Interrupt	
29		Vcc Tx	+3.3V Power supply transmitter	2
30		Vcc1	+3.3V Power supply	2
31	LVTTL-I	LPMode	Low Power Mode	
32		GND	Ground	1
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input	
34	CML-I	Tx3n	Transmitter Inverted Data Input	

Note 1: GND is the symbol for signal and supply (power) common for the QSFP+ module. All are common within the QSFP+ module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal-common ground plane.

Note 2: Vcc Rx, Vcc1 and Vcc Tx are the receiver and transmitter power supplies and shall be applied concurrently. Requirements defined for the host side of the Host Edge Card Connector are listed in Table 6. Recommended host board power supply filtering is shown in Figure 4. Vcc Rx Vcc1 and Vcc Tx may be internally connected within the QSFP+ module in any combination. The connector pins are each rated for a maximum current of 500mA.

Mechanical Dimensions

Ordering information

Part Number	Product Description
OPT-QSFP28-DAC-30-P1	QSFP28 Direct Attach Passive Cable (100G QSFP28 - Cu), 1m, AWG:30, 0°C ~ +70°C
OPT-QSFP28-DAC-30-P2	QSFP28 Direct Attach Passive Cable (100G QSFP28 - Cu), 2m, AWG:30, 0°C ~ +70°C
OPT-QSFP28-DAC-30-P3	QSFP28 Direct Attach Passive Cable (100G QSFP28 - Cu), 3m, AWG:30, 0°C ~ +70°C
OPT-QSFP28-DAC-24-P5	QSFP28 Direct Attach Passive Cable (100G QSFP28 - Cu), 5m, AWG:24, 0°C ~ +70°C

Note: You can be customized diameter and distance.

Important Notice

Performance figures, data and any illustrative material provided in this data sheet are typical and must be specifically confirmed in writing by OPTONE before they become applicable to any particular order or contract. In accordance with the OPTONE policy of continuous improvement specifications may change without notice.

The publication of information in this data sheet does not imply freedom from patent or other protective rights of OPTONE or others. Further details are available from any OPTONE sales representative.

sales@optone.net http://www.optone.net

Edition SEP 06, 2023 Published by Optone Technology Limited Copyright © OPTONE All Rights Reserved